स्र

Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur @] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08

Rev 1.11

<BS(PHY)>

<31/03/2022>

CONTINUOUS INTERNAL EVALUATION - 3

Dept: BS(PHY)	Sem / Div: I/A,B,C	Sub: Engineering Physics	S Code:21PHY12
06/04/2022	Time: 3-4:30 pm	Max Marks: 40	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Mark	RBT	CO's					
		S							
	PARTA								
1 8	Mention any four assumptions of Drude-Lorentz model and discuss any two success of Quantum free electron theory		L1& L2	CO4					
	What is Hall effect. Obtain the expression for the Hall coefficient	8	L1& L2	CO4					
	c Calculate the probability that an energy level at 0.2eV below Fermi level is occupied at temperature 500K.	4	L3	CO4					
	OR								
2	a Deduce the expression for electrical conductivity of a conductor using the quantum free electron theory of metals.		L2	CO4					
	b Describe in brief the various types of polarization mechanisms	8	L2	CO4					
	An elemental solid dielectric material has polarizability 7×10^{-40} Fm ⁻² . Assuming the internal field to be Lorentz, calculate the dielectric constant for the material if the material has 3×10^{28} atoms/m ³		L3	CO4					
	PART B								

Page: 1 / 2

3		With neat diagram, explain the principle, construction and working of Atomic Force Microscope.	8	L2	CO5				
	b	With neat diagram, explain the principle, construction and working of X-ray photoelectron spectroscope	. 8	L2	CO5				
	c	The first order Bragg reflection occurs when a monochromatic beam of X-rays of wavelength 0.675A° is incident on a crystal at a glancing angle of 4°. What is the glancing angle for third order Bragg's reflection to occur?	4	L3	CO5				
OR									
4	8	Explain the construction and working of X-Ray diffractometer.	8	L2	CO5				
	1	Describe the construction and working of Scanning Electron Microscope with the help of a neat diagram.	8	L2	CO5				
		Determine the wave length of X-rays for crystal size of 1.188×10 ⁻⁶ m, peak width is 0.5° and peak position 30°, for a cubic crystal. Given Scherrer's constant k=0.92.	4	L3	CO5				
L					0				

Prepared by: Prof. Thejaswini L P

6236.41304°

HOD: Prof. M.Ramananda Kamath